AGA215- LISTA AULAS 25 e 26(11/11/2019) -Entregar dia 18/11/2019 (dia da prova) COSMOLOGIA RELATIVÍSTICA E BIG-BANG

Nome:	GABARITO	A L
	Verdadeiro e Falso (2 pontos)	

- 1. (V) Um universo crítico é geometricamente plano.
- 2. (V) Obedecendo ao princípio cosmológico, um universo aberto pode possuir geometria de Lobachevski.
- 3. (F) A luz emitida por todas as estrelas no universo ultrapassa em energia total a radiação cósmica de fundo.
- 4. (\vee) O tempo entre o começo do Big-Bang e t $\sim 10^{-43}$ s não dá para ser descrito fisicamente por causa da falta de uma teoria quântica da gravitação.
- 5. (F) No começo da era GUT ocorre a separação entre as forças nucleares forte e fraca.
- 6. (V) Toda a matéria visível no universo pode ser descrita em termos de léptons e quarks e as forças que atuam entre eles.
- 7. (V) No final da era hadrônica ocorre o total confinamento dos quarks para formar prótons, nêutrons e outras partículas.
- 8. (V) Quando um elétron é formado numa colisão de raios gama um pósitron também é formado.
- 9. (V) Deutério e Hélio são formados durante a era nuclear.

tempo presente a MATERIA domina.

- 10.(F) Nucleossíntese primordial refere-se a todos os elementos formados até o ferro durante o Big-Bang.
- 11.(F) Desacoplamento refere-se às interações entre matéria e anti-matéria no final da era da radiação.
- 12.(V) O problema de horizonte relaciona-se com a homogeneidade e isotropia da radiação cósmica de fundo.

Completar o que falta (3 pontos)

1.	GRAVIDADE	tende a desacelerar a expansão do universo.
2.	ENERGIA E'S CURA	tende a acelerar a expansão do universo.
3.		ada em conta, os dados observacionais atuais parecem everá <u>SE EXPANDIR ETERNAMENTE</u> .
4.	Nos estágios iniciais de fo pela RADIAÇAD/ENE	rmação do universo, a densidade total era dominada
5.	A radiação cósmica de fu MICROON DAS	ndo é observada hoje no comprimento de onda de devido à
	EXPANSÃO DO UNI	ERSO . COMPANY CONTRACTOR OF THE PROPERTY OF T
6.	Comparando a densidado	e em massa de matéria e radiação, acha-se que no

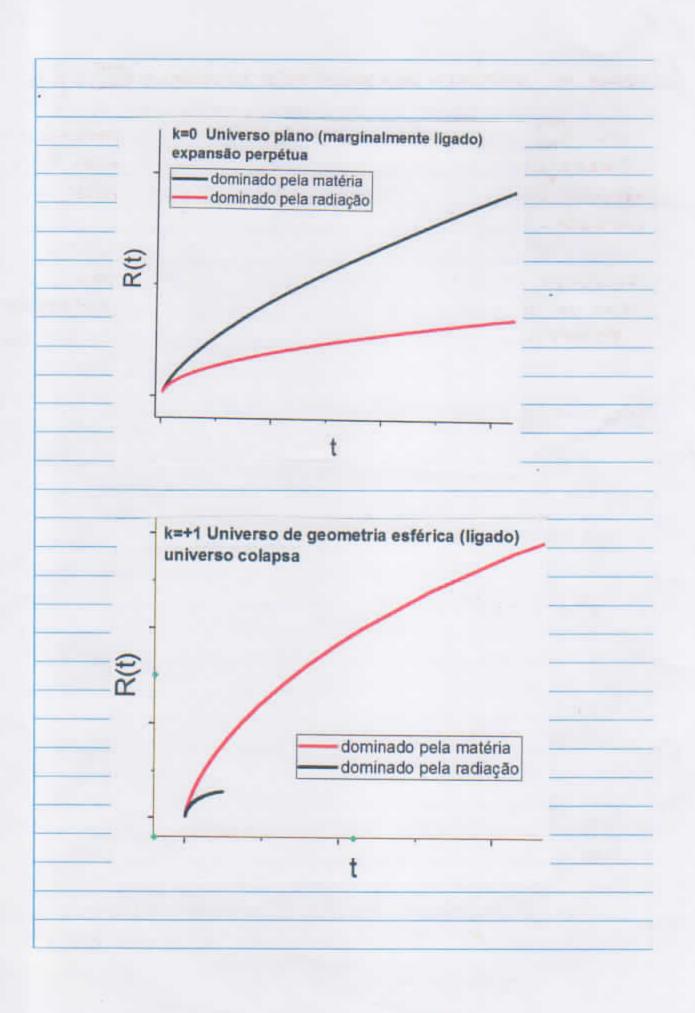
Durante a época de Planck todas as forças estão UNIFICADAS, e o universo é considerado uma singularidade.
 No processo de "produção de pares", dois FOTONS interagem para formar uma partícula e uma ANTI-PARTICULA.
 A temperatura limite necessária para formar partículas ANMENTA (aumenta/diminui) com o aumento da massa da partícula criada.
 O universo se expandiu por um fator 10⁵⁰ durante a INFLAÇÃO, onde houve a separação da força FORTE das forças ELETROMAGNETICA e FRAÇÃO
 As flutuações de densidade da radiação cósmica de fundo estão ligadas a FORMAÇÃO DE ESTRUTURAS
 Uma das vantagens da teoria da inflação é explicar os problemas de HORIZONTE e CURYATURA

PROBLEMAS (5 pontos)

- 1. Através das equações de Friedmann-Lemaître obter o tamanho do universo considerando o universo estático de Einstein (k=+1, R=cte, p=0 e $\land \neq 0$). Estime o raio do universo em Gpc se a densidade for de 8×10^{-27} kg/m³. (dica: obtenha o fator de escala R em função de ρ)
- 2. Supondo um universo estático de geometria esférica e raio do exercício anterior: a) qual o tempo t que a luz levaria para circumnavegá-lo? (considerar que a luz percorre um caminho equivalente ao perímetro de um círculo e achar t em função da densidade ρ) b) Se este universo tivesse a densidade da água (1 g/cm³), qual seria o seu tamanho em minutos-luz?; c) Qual o tempo que a luz levaria para circumnavegá-lo em horas?; d) Como seriam observados os objetos nestas condições?
- 3. Para um universo de Friedmann (A=0), escolher um universo de k=-1 ou k=+1 e calcular a variação do fator de escala com o tempo para a geometria escolhida, supondo um universo dominado pela matéria. Como fica a expansão neste caso?
- 4. Faça o mesmo exercício 3 para um universo dominado pela radiação. Esboçar os gráficos $R(t) \times t$ juntos para um universo dominado pela matéria e pela radiação para a geometria escolhida.

Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas

$3 = 3 \times 10^{27} \text{ kg/m}^3 = 3 \times 10^{61} \text{ kg/m}^3$ $\sqrt{4\pi \times 6,67 \times 10^{8} \times 8 \times 10^{23}}$	NUME	INC. MARK.				
3) $K=+1$, $R=ct$, $p=0$ EQUACOET DE FRIEDMANN: 8 πG $p(t)^2 = -kc^2 - R(t)^2 - 2R(t)$ $R(t)^2 = R(t)^2 - R(t)$ 9 πG $p(t) = kc^2 + R(t)^2 - R(t)$ 2 πG $p(t) = kc^2 + R(t)^2 - R(t)$ 8 πG $p(t) = kc^2 + R(t)^2 - R(t)^2$ 8 πG $p(t) = c^2 - R(t)^2 - R(t)^2$ SUBSTITUINDO $A : 8\pi G$ $p = c^2 - c^2 = 2 c^2$ 8 πG $p = 2 c^2 = 2 R = C$ 8 πG $p = 2 c^2 = 2 R = C$ 9 πG $p = 2 c^2 = 2 R = C$ 9 πG $p = 2 c^2 = 2 R = C$ 9 πG $p = 2 c^2 = 2 R = C$ 9 πG $p = 2 c^2 = 2 R = C$ 9 πG $p = 2 c^2 = 2 R = C$ 10 πG $p = 2 c^2 = 2 R$ 11 πG $p = 2 c^2 = 2 R$ 12 πG $p = 2 c^2 = 2 R$ 13 πG $p = 2 c^2 = 2 R$ 14 πG $p = 2 c^2 = 2 R$ 15 πG $p = 2 c^2 = 2 R$ 16 πG $p = 2 c^2 = 2 R$ 17 πG $p = 2 c^2 = 2 R$ 18 πG $p = 2 c^2 = 2 R$ 19 πG $p = 2 c^2 = 2 R$ 10 πG $p = 2 c^2 = 2 R$ 10 πG $p = 2 c^2 = 2 R$ 10 πG $p = 2 c^2 = 2 R$ 11 πG $p = 2 c^2 = 2 R$ 12 πG $p = 2 c^2 = 2 R$ 13 πG $p = 2 c^2 = 2 R$ 14 πG $p = 2 c^2 = 2 R$ 15 πG $p = 2 c^2 = 2 R$ 16 πG $p = 2 c^2 = 2 R$ 17 πG $p = 2 c^2 = 2 R$ 18 πG $p = 2 c^2 = 2 R$ 19 πG $p = 2 c^2 = 2 R$ 10 πG $p = 2 c^2 = 2 R$ 10 πG $p = 2 c^2 = 2 R$ 11 πG	CURSO	NOTA	EXAMINADORES			
3 $K=+1$, $R=ct$, $p=0$ EQUACOET DE FRIEDMANN: 8 πG p($M^2=-kc^2-R(M^2-2R(t))$) 9 πG p($M^2=-kc^2-R(M^2-2R(t))$) 9 πG p($M^2=-kc^2-R(M^2-2R(t))$) 9 πG p($M^2=-kc^2-R(M^2-2R(t))$) 10 πG p($M^2=-kc^2-R(M^2-2R(t))$) 11 πG p($M^2=-kc^2-R(M^2-2R(t))$) 12 πG p($M^2=-kc^2-R(M^2-2R(t))$) 13 πG p($M^2=-kc^2-R(M^2-2R(t))$) 14 πG p($M^2=-kc^2-R(M^2-2R(t))$) 15 πG p($M^2=-kc^2-R(M^2-2R(t))$) 16 πG p($M^2=-kc^2-R(M^2-2R(t))$) 17 πG p($M^2=-kc^2-R(M^2-2R(t))$) 18 πG p($M^2=-kc^2-R(M^2-2R(t))$) 19 πG p($M^2=-kc^2-R(M^2-2R(t))$) 19 πG p($M^2=-kc^2-R(M^2-2R(t))$) 10 πG p($M^2=-kc^2-R(M^2-2R(t))$) 11 πG p($M^2=-kc^2-R(M^2-2R(t))$) 12 πG p($M^2=-kc^2-R(M^2-2R(t))$) 13 πG p($M^2=-kc^2-R(M^2-2R(t))$) 14 πG p($M^2=-kc^2-R(M^2-2R(t))$) 15 πG p($M^2=-kc^2-R(M^2-2R(t))$) 16 πG p($M^2=-kc^2-R(M^2-2R(t))$) 17 πG p($M^2=-kc^2-R(M^2-2R(t))$) 18 πG p($M^2=-kc^2-R(M^2-2R(t))$) 19 πG p(M^2	DISCIPLINA					
EQUAÇÕES DE FRIEDRANN: 8	DATA					
EQUAÇÕES DE FRIEDRANN: 8		-				
8 THG $p(t)^2 = -kc^2 - R(t)^2 - 2R(t) + L$ (1) 8 THG $p(t) = kc^2 + R(t)^2 - L$ (2) 8 THG $p(t) = kc^2 + R(t)^2 - L$ (2) 8 THG $p(t) = kc^2 - R(t)^2 - L$ (2) 8 THG $p(t) = c^2 - L$ 9 THANHO 8 THG $p(t) = 2c^2 - 2c^2 - 2c^2 - 2c^2$ 10 THANHO 11 THE POWERSO 12 THANHO 12 THANHO 13 THANHO 14 THANHO 15 THANHO 16 THANHO 17 THANHO 17 THANHO 18 TH	3) K=+1, R=cte, b=0					
8 THG $p(t)^2 = -kc^2 - R(t)^2 - 2R(t) + L$ (1) 8 THG $p(t) = kc^2 + R(t)^2 - L$ (2) 8 THG $p(t) = kc^2 + R(t)^2 - L$ (2) 8 THG $p(t) = kc^2 - R(t)^2 - L$ (2) 8 THG $p(t) = c^2 - L$ 9 THANHO 8 THG $p(t) = 2c^2 - 2c^2 - 2c^2 - 2c^2$ 10 THANHO 11 THE POWERSO 12 THANHO 12 THANHO 13 THANHO 14 THANHO 15 THANHO 16 THANHO 17 THANHO 17 THANHO 18 TH	EQUACOES DE FRIEDRANN!	0				
$R(t)^2$ $R(t)^2$ $R(t)$ $R(t)^2$ $R(t)$ $R(t)^2$ $R(t)^2$ $R(t)$ $R(t)^2$ $R(t$	XTTG - 452 PINTO 2 PM		(1)			
$\frac{8\pi G}{3} p(t) = \frac{kc^{2}}{R(t)^{2}} + \frac{2(t)^{2}^{2}}{R(t)^{2}} \frac{\Lambda}{3} \qquad (2)$ $= \text{ENTRO}: (1) \Lambda = \frac{c^{2}}{R(t)^{2}} $ $= \frac{R(t)^{2}}{R(t)^{2}} \qquad (2) 8\pi G p(t) = \frac{c^{2}}{R(t)^{2}} - \frac{\Lambda}{3} \qquad (2)$ $= \frac{8\pi G}{3} p(t) = \frac{c^{2}}{R(t)^{2}} - \frac{\Lambda}{3} \qquad (2)$ $= \frac{8\pi G}{3} p(t) = \frac{2c^{2}}{R(t)^{2}} - \frac{\Lambda}{3} \qquad (2)$ $= \frac{2c^{2}}{R(t)^{2}} - \frac{2c^{2}}{R(t)^{2}} - \frac{2c^{2}}{3(2^{2})^{2}} - \frac{2c^{2}}{$	- 22 DINS DINS TOWN	+				
ENTAD: (1) $A = \frac{c^2}{R(t)^2}$ (2) $8\pi G p(t) = \frac{c^2}{R(t)^2} = \frac{A}{R(t)^2}$ SUBSTITUINDO $A : 8\pi G p = \frac{c^2}{R^2} - \frac{c^2}{3R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2}$	KID- KIE- /KIE					
ENTAD: (1) $A = \frac{c^2}{R(t)^2}$ (2) $8\pi G p(t) = \frac{c^2}{R(t)^2} = \frac{A}{R(t)^2}$ SUBSTITUINDO $A : 8\pi G p = \frac{c^2}{R^2} - \frac{c^2}{3R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2}$	• 270	. 1				
ENTAD: (1) $A = \frac{c^2}{R(t)^2}$ (2) $8\pi G p(t) = \frac{c^2}{R(t)^2} = \frac{A}{R(t)^2}$ SUBSTITUINDO $A : 8\pi G p = \frac{c^2}{R^2} - \frac{c^2}{3R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2}$	8116 p(t) = kc2 + R(t) - 1 (2)					
ENTAD: (1) $A = \frac{c^2}{R(t)^2}$ (2) $8\pi G p(t) = \frac{c^2}{R(t)^2} = \frac{A}{R(t)^2}$ SUBSTITUINDO $A : 8\pi G p = \frac{c^2}{R^2} - \frac{c^2}{3R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{R}{R^2} = \frac{c}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = 2\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ $8\pi G p = \frac{2}{3}\frac{c^2}{R^2}$	3 P(t)2 P(t)2 3					
$R(t)^{2}$ $(2) \ 8\pi G \ p(t) = c^{2} - \Lambda$ $8\pi G \ p = c^{2} - c^{2} = 2 \ c^{2}$ $R(t)^{2} \ 3$ $8\pi G \ p = c^{2} - c^{2} = 2 \ c^{2}$ $R(t)^{2} \ 3$ $R(t$	CAUTE LATER IN THE STATE OF THE					
$R(t)^{2}$ $(2) \ 8\pi G \ p(t) = c^{2} - \Lambda$ $8\pi G \ p = c^{2} - c^{2} = 2 \ c^{2}$ $R(t)^{2} \ 3$ $8\pi G \ p = c^{2} - c^{2} = 2 \ c^{2}$ $R(t)^{2} \ 3$ $R(t$	ENTAD : (1) L = C2					
(2) $8\pi G p(t) = c^2 - \Lambda$ $R(t)^2 3$ SUBSTITUTION DO Λ : $8\pi G p = c^2 - c^2 = 2 c^2$ $R(t)^2 3 R^2 3 R^2 3 R^2$ SE $P = 8 \times 10^2 \text{ kg/m}^3 = 3 R = 3 \times 10^6 \text{ kg/m}^3$ $\sqrt{4\pi * 6,67 \times 10^2 * 8 \times 10^2}$						
SUBSTITUTION DO L: 8THG $p = \frac{c^2}{R^2} - \frac{c^2}{3R^2} = \frac{2}{3}\frac{c^2}{R^2}$ STIG $p = \frac{2}{3}\frac{c^2}{R^2} = \frac{2}{3}\frac{c^2}{R^2}$ SE $p = 8 \times 10^2 \text{ kg/m}^3 = 3$ $Q = \frac{3 \times 10^6 \text{ kg/m}}{4 \text{Tr}_x 6,64 \times 10 \times 8 \times 10}$						
SUBSTITUÍNDO A: 8TIG $p = c^2 - c^2 = 2 c^2$ RETIGIP = $2 c^2 = 3R^2 = 3 R^2$ RETIGIP DO UNIVERSO SE $p = 8 \times 10^2 \text{ kg/m}^3 = 3 R = 3 \times 10^6 \text{ km/ls}$ $\sqrt{4\pi \times 6/67 \times 10^8 \times 8 \times 10^{-23}}$	(2) 8110 pce) = C= -2	L-	120,10			
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	5 R(t) :	3				
SE $p = 8 \times 10^{-27} \text{kg/m}^3 = 3 \Omega = \frac{C}{3 \times 10^6 \text{ kg/m}^3}$ $\sqrt{4\pi \times 6,67 \times 10^8 \times 8 \times 10^{-22}}$	SUBSTITUINDO L : STEG P = CZ -	- c2	2 C2			
$S \in P = 8 \times 10^{-27} \text{ kg/m}^3 = 3 \Omega = 3 \times 10^{6} \text{ kg/m}^3$	3 122	3122	3 65			
$S \in P = 8 \times 10^{-27} \text{ kg/m}^3 = 3 \Omega = 3 \times 10^{6} \text{ kg/m}^3$	81160 = 2 c2 -3 Q = C		E O TAMANHO			
SE P = 8 × 10 kg/m3 = > Q = 3 × 10 km/s \[\lambda \tau \text{6,67 × 10 \cdot 8 × 10} \]	35 BZ VIJEC	- 0				
V4π×6,67×10 ×8×10	14113	1/-	Jao Marverso			
V4π× 6,67× 10 × 8×10	-27 2 0	6	WV-			
	SE P = 8 × 10 kg/m2 = 1 12 = 3 ×	10 10	15			
			-11 -22			
		6164×1	0 * 8 × 10			
$R = 1.16 \times 10^{23} \text{ cm} = 1$	Q = 1, 16 × 10 1cm = >					
R = 3,7 G pc		Color				
[[11-2]1	0, 100				
			ALC: N			


t = 1 $\begin{array}{c|c}
R & \text{Result} & \text{Result} \\
\hline
R(t) & \text{Result} & \text{Expansion} & \text{Expansion}
\end{array}$

Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas

NOME	N.º USP	N.º USP			
CURSO	NOTA	EXAMINADORES			
DISCIPLINA					
DATA					
rR.					
b) k=-1 = s et = VR	_dR				
O VOHAT +12					
C2					
CHAMANDO a= anar => ct =	12	_dr			
CS	- 10	_			
	V R				
[-1 /00 01 0 1-1/10 1					
ct = /R(a+R) - a simh /R	EXPANS	NO ETERNA			
(Va)					
- R					
c) k=+1 => et= VR	_dR				
D VOCHET - F	2				
10 V C2					
=> ct= [] dR					
10 Va -1					
ct = a sim (/R) - /Q(a-R)					
(Va/V					
A EXPANSAD ATINGE UM HÁXING Q	UANDO RE	a i			
Dim-1 = 11/2	MA	4			
	= 0 11 =	ANGEN OF			
ENTAD C tHAX = a TT => tHAX	ac ac	TIPATHOLE			
ONDE A EXPANSHU PARA					

PARE UM UNIVERSO DOMINADO PELE MATERIA : EMAN = IT a => that > the >> O TEMPO PARA A EXPANSAG PARAR NOM UNIVERSED DOMINADO PELA RADIAÇÃO É MENOR DO QUE EN UN UNIVERSO DO HINADO PELA MATERIA . UNIVERSO DOMINADO PELA RADIACAD E MENOR DO QUE UN UNIVERSO DOMINADO PELA MATERIA (UNIVERSO FECHADO). RHAL = a > RHAL = Va k=-1 = Universo de geometria hiperbólica (não ligado) expansão perpétua dominado pela matéria dominado pela radiação R(E)

