

PLANETAS E SISTEMAS PLANETÁRIOS

AGA0502

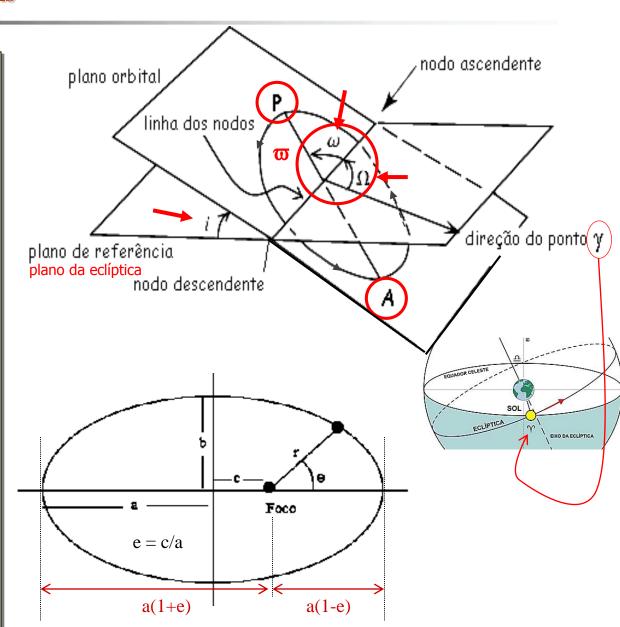
Enos Picazzio

DINÂMICA DO SISTEMA SOLAR

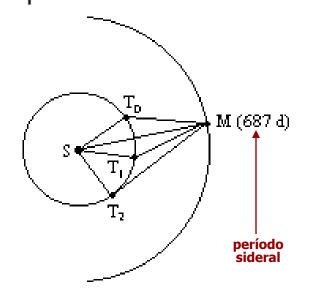
NÃO HÁ PERMISSÃO DE USO PARCIAL OU TOTAL DESTE MATERIAL PARA OUTRAS FINALIDADES.

Parâmetros orbitais

- i Inclinação (i > 90°, movimento retrógrado).
- Ω Longitude do nodo ascendente $(0 \le \Omega \le 360^{\circ})$
- ∞ Argumento do pericentro, contado no sentido do movimento do corpo $(0 \le \infty \le 360^\circ)$
- σ Longitude do pericentro $(\Omega + \omega)$
- P, A Pericentro e Apocentro
- n movimento médio
 (velocidade angular média do corpo em torno do atrator: n=(2π/período)
- e Excentricidade da órbita (relação entre a semi-distância focal e o semi-eixo maior (c/a)



Leis de Kepler



S: Sol; M: marte; T_0 , T_1 , T_2 : posição Terra

Brahe: movimento solar bem determinado portanto, $T_0 \hat{S} T_1$; $T_0 \hat{S} T_2$... conhecidos

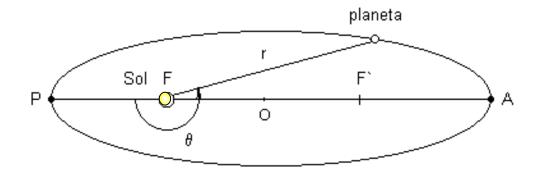
Kepler: mediu os ângulos $\widehat{ST_1M}$; $\widehat{ST_2M}$... Como \widehat{SM} é segmento comum, Kepler determinou $\widehat{ST_1}$, $\widehat{ST_2}$... em função de \widehat{SM}

Obtidas empiricamente no século XVII, através da redução das observações de Tycho Brahe.

Resultados obtidos só foram ajustados a órbitas elípticas.

Períodos: sideral – tempo necessário para ocupar a mesma posição orbital sinódico – tempo necessário para ocupar a mesma posição aparente

Leis de Kepler



PF = distância periélica

AF = distância afélica

e = excentricidade = OF/OP

r = distância heliocêntrica

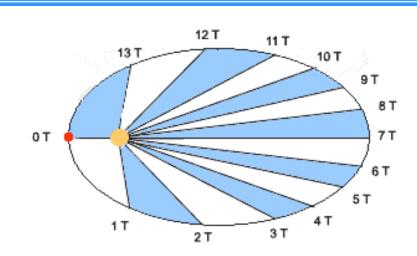
a = semi - eixo maior (OA = OP)

 θ = ângulo de anomalia

1^a Lei: A órbita de cada planeta, relativa ao Sol, é uma elipse com o Sol em um dos focos:

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$
 1.1.1

Leis de Kepler



3ª Lei: O quadrado do período orbital (P) é proporcional ao cubo do semi-eixo maior:

$$a^3 = const \times P^2$$
 ou
 $n^2 a^3 = const$ com $n = \frac{2\pi}{P}$

2a Lei: O raio vetor que une o planeta ao Sol varre áreas iguais em tempos iguais:

$$\frac{dA}{dt} = \frac{r^2}{2} \frac{d\theta}{dt} = \frac{r^2 \dot{\theta}}{2} = \frac{h}{2}$$
 (1.1.2)

O intervalo de tempo decorrido entre "1T e 2T", "3T e 4T"... são iguais, logo as áreas varridas pelo raio vetor entre "1T e 2T", "3T e 4T"... são iguais.

Lembre-se que a área do triângulo Sol-3T-4T é obtida por:

$$\frac{base \times altura}{2} = \frac{rd\theta \times r}{2}$$

Lei de Gravitação Universal

Energia total de um sistema gravitacional:

$$E = E_C(r) + E_P(r) = \frac{mv^2}{2} + \left(-\frac{mMG}{r}\right)$$

com:

$$\boxed{E_C(r)} = energia\ cinética\ em\ r\ ; \ \boxed{E_P(r)} = energia\ potencial\ gravitacional\ em\ r\ ; \ \frac{dE}{dt} = 0\ (conservação\ da\ energia)$$

Possibilidades:
$$0 < e < 1$$
 (elipse) $\Rightarrow E < 0$ (corpo gravitacionalmente preso) $e = 1$ (parábola) $\Rightarrow E = 0$ (corpo gravitacionalmente solto) $e > 1$ (hipérbole) $\Rightarrow E > 0$ (corpo gravitacionalmente ejetado)

para o caso de E=0, as energias cinética e potencial são iguais em módulo, por isso o corpo está solto. Isto define uma velocidade crítica, a <u>velocidade de escape</u>:

$$0 = \frac{mv^2}{2} + \left(-\frac{mMG}{r}\right) \rightarrow \frac{v^2}{2} = \left(\frac{MG}{r}\right) \implies v_e = \sqrt{\frac{2MG}{r}}$$

Problema de 1 corpo (corpo de massa desprezível movimentando-se ao redor de outro com massa, supostamente, pontual)

Sistema Referencial em rotação:

$$a_r = \ddot{r} - r\dot{\theta}^2$$
 $r\dot{\theta}^2 \equiv \text{ac. centrifuga}$

como
$$F(r) = m.a_r$$
: $F(r) = m\ddot{r} - mr\dot{\theta}^2$

Problema de 1 corpo (corpo de massa desprezível movimentando-se ao redor de outro com massa, supostamente, pontual)

Sistema Referencial em rotação:

$$a_r = \ddot{r} - r\dot{\theta}^2$$
 $r\dot{\theta}^2 \equiv \text{ac.centrifuga}$
como $F(r) = m.a_r$: $F(r) = m\ddot{r} - mr\dot{\theta}^2$
 $de(1.1.2)$: $r^2\dot{\theta} = h \rightarrow \dot{\theta}^2 = h^2/r^4$
$$\frac{dA}{dt} = \frac{r^2}{2}\frac{d\theta}{dt} = \frac{r^2\dot{\theta}}{2} = \frac{h}{2}(1.1.2)$$
 $logo$: $F(r) = m\ddot{r} - mh^2/r^3$ 1.2.1

$$\frac{dA}{dt} = \frac{r^2}{2} \frac{d\theta}{dt} = \frac{r^2 \dot{\theta}}{2} = \frac{h}{2} (1.1.2)$$

Problema de 1 corpo (corpo de massa desprezível movimentando-se ao redor de outro com massa, supostamente, pontual)

Sistema Referencial em rotação:

$$a_r = \ddot{r} - r\dot{\theta}^2$$
 $r\dot{\theta}^2 \equiv \text{ac.centrifuga}$

como
$$F(r) = m.a_r$$
: $F(r) = m\ddot{r} - mr\dot{\theta}^2$

de (1.1.2):
$$r^2 \dot{\theta} = h \rightarrow \dot{\theta}^2 = h^2 / r^4$$

logo:
$$F(r) = m\ddot{r} - mh^2 / r^3$$
 1.2.1

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

$$F(r) = \frac{mh^2}{a(1 - e^2)r^2}$$

Problema de 1 corpo (corpo de massa desprezível movimentando-se ao redor de outro com massa, supostamente, pontual)

Sistema Referencial em rotação:

$$a_r = \ddot{r} - r\dot{\theta}^2$$
 $r\dot{\theta}^2 \equiv \text{ac.centrifuga}$

como
$$F(r) = m.a_r$$
: $F(r) = m\ddot{r} - mr\dot{\theta}^2$

de (1.2.1):
$$r^2 \dot{\theta} = h \rightarrow \dot{\theta}^2 = h^2 / r^4$$

logo:
$$F(r) = m\ddot{r} - mh^2 / r^3$$

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

$$F(r) = \frac{mh^2}{a(1 - e^2)r^2}$$

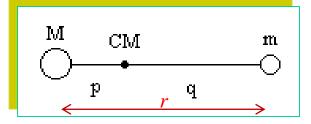
$$m\ddot{r} - mh^2 / r^3 = mh^2 / a(1 - e^2)r^2 \qquad 1.2.3$$

igualando

Esta é a equação diferencial do movimento.

A solução ?

Problema de 2 corpos (movimento relativo ao centro de massa)



lembrando
$$a_r = \ddot{r} - r\dot{\theta}^2$$

$$p + q = r$$

$$Mp = mq$$
1.3.1

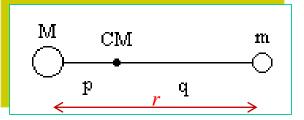
ac.em_M é imposta por_m. Logo:

$$\ddot{p} - p\dot{\theta}^2 = -\frac{mG}{r^2}$$
 1.3.2

analogamente:

$$\ddot{q} - q\dot{\theta}^2 = -\frac{MG}{r^2}$$
 1.3.3

Problema de 2 corpos (movimento relativo ao centro de massa)



lembrando
$$a_r = \ddot{r} - r\dot{\theta}^2$$

$$p + q = r$$

$$Mp = mq$$
1.3.1

ac.em_M_é imposta por_m. Logo:

$$\ddot{p} - p \dot{\theta}^2 = -\frac{mG}{r^2}$$
analogamente:

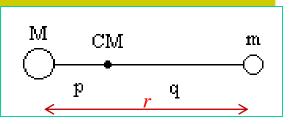
$$\ddot{q} - q\dot{\theta}^2 = -\frac{MG}{r^2}$$

$$\ddot{r} - r\dot{\theta}^2 = -\frac{G}{r^2}(m+M)$$

Retomando a 1.1.2:
$$\frac{dA}{dt} = \frac{r^2}{2} \frac{d\theta}{dt} = \frac{r^2 \dot{\theta}}{2} = \frac{h}{2}$$

$$h = r^2 \dot{\theta}; \dot{\theta} = \frac{h}{r^2} \Rightarrow \dot{\theta}^2 = \frac{h^2}{r^4}$$

Problema de 2 corpos (movimento relativo ao centro de massa)



$$p + q = r$$
$$Mp = mq$$

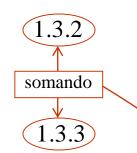
1.3.1

ac.em M é imposta por m. Logo:

$$\ddot{p} - p\dot{\theta}^2 = -\frac{mG}{r^2}$$

analogamente:

$$\ddot{q} - q\dot{\theta}^2 = -\frac{MG}{r^2}$$

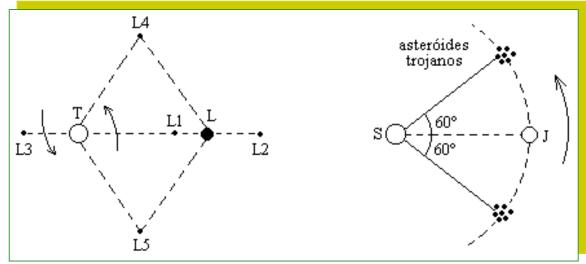


$$\ddot{r} - r\dot{\theta}^2 = -\frac{G}{r^2}(m+M)$$

como
$$\dot{\theta}^2 = \frac{h^2}{r^4} \Rightarrow \ddot{r} - h^2 / r^3 = -G(m+M) / r^2$$

cuja solução é:

$$r = \frac{h^2}{G(m+M)} \frac{1}{(1+e\cos\theta)}$$



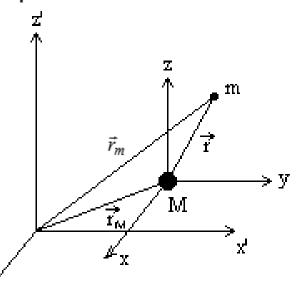
Caso particular de configuração equilateral http://faculty.ifmo.ru/butikov/Projects/Collection6.html

Neste caso existem 5 soluções estacionárias → 5 pontos Lagrangianos.

Soluções estáveis: L4 e L5.

Havendo perturbação, o corpo pode voltar à posição de equilíbrio dependendo da relação entre as massas envolvidas.

Exemplo típico: asteróides Troianos de Júpiter.



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

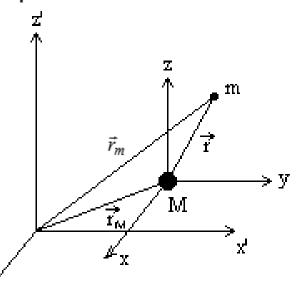
A - equação do movimento relativo

Temos:
$$\vec{F} = m\vec{a} = m\vec{r}$$

$$\vec{F} = G \frac{Mm}{r^2} \frac{\vec{r}}{r}$$

$$m \ddot{\vec{r}}_m = -\frac{GMm}{r^2} \frac{\vec{r}}{r} \Rightarrow \ddot{\vec{r}}_m = -\frac{GM\vec{r}}{r^3}$$

$$M \ddot{\vec{r}}_{M} = \frac{GMm}{r^{2}} \frac{\vec{r}}{r} \Rightarrow \ddot{\vec{r}}_{M} = \frac{Gm\vec{r}}{r^{3}}$$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

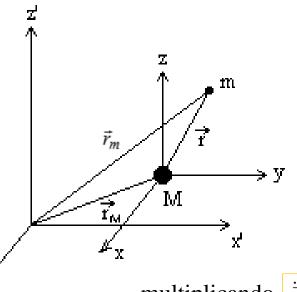
A - equação do movimento relativo

$$\vec{r} = \vec{r}_m - \vec{r}_M \implies \ddot{\vec{r}} = \ddot{\vec{r}}_m - \ddot{\vec{r}}_M = \frac{-GM\vec{r}}{r^3} - \frac{Gm\vec{r}}{r^3} = -\frac{\vec{r}}{r^3}G(M+m) = -\frac{\vec{r}}{r^3}\mu_{\perp}$$

$$\ddot{\vec{r}} = -\frac{\mu}{r^3} \vec{r}$$

$$\ddot{\vec{r}} + \frac{\mu}{r^3} \vec{r} =$$

$$\ddot{\vec{r}} = -\frac{\mu}{r^3}\vec{r} \qquad \Rightarrow \qquad \ddot{\vec{r}} + \frac{\mu}{r^3}\vec{r} = 0 \quad \text{(I)} \qquad \text{com } \mu = G(M+m) \quad [\text{ML}^3\text{T}^{-2}]$$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

B – conservação da energia

multiplicando
$$\ddot{\vec{r}} + \frac{\mu}{r^3} \vec{r} = 0$$
 (I) escalarmente por $\dot{\vec{r}}$:

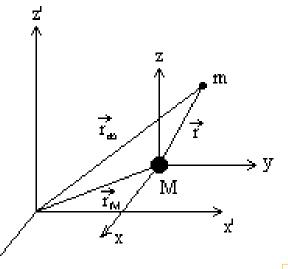
$$\dot{\vec{r}}$$

$$\dot{\vec{r}} \cdot \ddot{\vec{r}} + \dot{\vec{r}} \cdot \ddot{\vec{r}} \frac{\mu}{r^3} = 0 \implies \vec{\mathbf{v}} \cdot \dot{\vec{\mathbf{v}}} + \frac{\mu}{r^3} \dot{\vec{r}} \cdot \vec{r} = 0 \implies \mathbf{v} \cdot \dot{\mathbf{v}} + \frac{\mu}{r^3} r \cdot \dot{r} = 0 \implies \frac{d}{dt} \left(\frac{\mathbf{v}^2}{2} - \frac{\mu}{r} \right) = 0$$

$$\Rightarrow E = \frac{\mathbf{v}^2}{2} - \frac{\mu}{r} = cte \quad (II)$$

$$\frac{d}{dt} \left(\frac{\mathbf{v}^2}{2} - \mu r^{-1} \right) = \frac{2\mathbf{v} d\mathbf{v}}{2} - \mu(-1)r^{-2} \frac{dr}{dt} = \mathbf{v} \cdot \mathbf{v} + \frac{\mu r}{r^2} = 0$$

$$\frac{d}{dt} \left(\frac{v^2}{2} - \mu r^{-1} \right) = \frac{2v dv}{dt} - \mu (-1) r^{-2} dr/dt = v v + \frac{\mu r}{r^2} = v v + \frac{\mu r r}{r^3}$$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

C – conservação do momento angular

multiplicando
$$\ddot{\vec{r}} + \frac{\mu}{r^3} \vec{r} = 0$$
 (I) vetorialmente por \vec{r} :

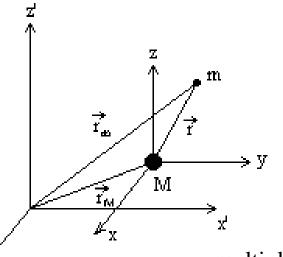
lembrando:

$$r \times r \times sen(\theta = 0) = 0$$

$$\vec{r} \times \ddot{\vec{r}} + \frac{\mu}{r^3} \vec{r} \times \vec{r} = 0 \qquad \therefore \quad \vec{r} \times \ddot{\vec{r}} = 0 \qquad \text{(pois } \vec{r} \times \vec{r} = 0)$$

$$\text{como } \frac{d}{dt} (\vec{r} \times \dot{\vec{r}}) = \dot{\vec{r}} \times \dot{\vec{r}} + \vec{r} \times \ddot{\vec{r}} = 0 \qquad \Rightarrow \quad \vec{r} \times \dot{\vec{r}} = cte \quad (\dot{\vec{r}} \times \dot{\vec{r}} = 0)$$

Momento angular :
$$\vec{h} = \vec{r} \times \dot{\vec{r}} = cte$$
 (III) $\vec{h} = \vec{r} \times \dot{\vec{v}} = cte$



 $M, m \equiv \text{massas}$

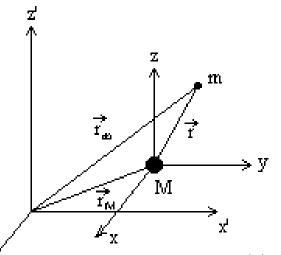
 $x', y', z' \equiv$ sistema inercial do conjunto

 $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

D – equação da trajetória (1º lei de Kepler)

multiplicando
$$\ddot{\vec{r}} + \frac{\mu}{r^3} \vec{r} = 0$$
 (I) vetorialmente por \vec{h} :
$$\ddot{\vec{r}} \times \vec{h} + \frac{\mu}{r^3} (\vec{r} \times \vec{h}) = 0 \implies \ddot{\vec{r}} \times \vec{h} = \frac{\mu}{r^3} (\vec{h} \times \vec{r})$$

$$\vec{h}$$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

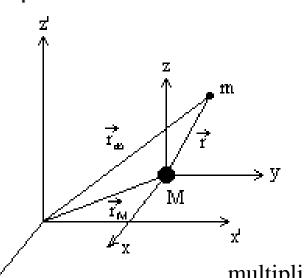
D – equação da trajetória (1º lei de Kepler)

multiplicando $\ddot{\vec{r}} + \frac{\mu}{r^3} \vec{r} = 0$ (I) vetorialmente por \vec{h} :

$$\ddot{\vec{r}} \times \vec{h} + \frac{\mu}{r^3} (\vec{r} \times \vec{h}) = 0 \implies \ddot{\vec{r}} \times \vec{h} = \frac{\mu}{r^3} (\vec{h} \times \vec{r})$$
$$\ddot{\vec{r}} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

lembrando que

$$\vec{h} = \vec{r} \times \vec{v}$$
 (III)

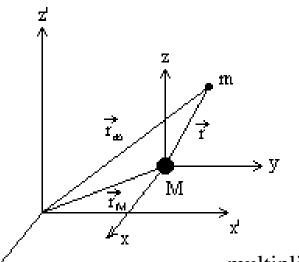


 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

D – equação da trajetória (1º lei de Kepler)

multiplicando
$$\ddot{r} + \frac{\mu}{r^3} \vec{r} = \vec{r} \cdot \vec{r}$$



 $\frac{d}{dt}(\dot{\vec{r}}\times\vec{h}) = \mu \frac{d}{dt}\left(\frac{\vec{r}}{r}\right)$

 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

D – equação da trajetória (1º lei de Kepler)

multiplicando
$$\ddot{r} + \frac{\mu}{r^3} \vec{r} = 0$$

$$\ddot{r} \times \vec{h} + \frac{\mu}{r^3} (\vec{r} \times \vec{h}) = 0 \implies \vec{h}$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

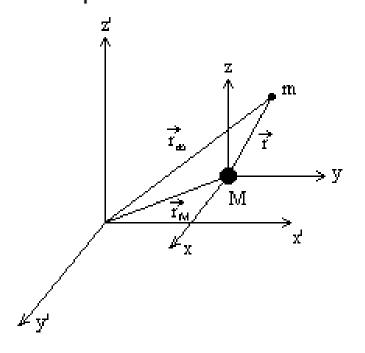
$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{h} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{r} \times \vec{r} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r})$$

$$\ddot{r} \times \vec{r} \times \vec{r} = \frac{\mu}{r^3} ([\vec{r} \times \vec{v}] \times \vec{r}$$

$$\ddot{r} \times \vec{r} \times \vec{r} \times \vec{r} =$$



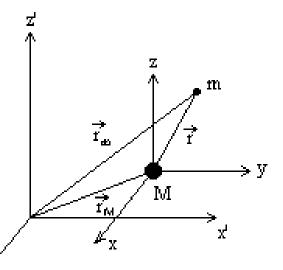
 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa

D – equação da trajetória (1º lei de Kepler)

de M e não girante em relação ao primeiro.

integrando:
$$\frac{d}{dt}(\vec{r} \times \vec{h}) = \mu \frac{d}{dt}(\vec{r})$$
$$\dot{\vec{r}} \times \vec{h} = \frac{\mu}{r}\vec{r} + \vec{\beta}$$
$$com \vec{\beta} \equiv \text{cte de integração}$$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv \text{sistema inercial do conjunto}$

 $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

D – equação da trajetória (1º lei de Kepler)

integrando:

$$\frac{d}{dt}(\dot{\vec{r}} \times \vec{h}) = \mu \frac{d}{dt} \left(\frac{\vec{r}}{r}\right)$$

$$\dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} + \vec{\beta}$$

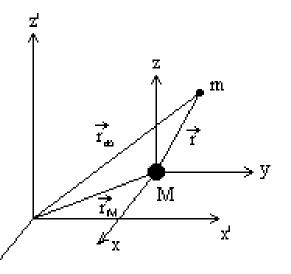
$$\operatorname{com} \vec{\beta} \equiv \operatorname{cte} \operatorname{de} \operatorname{integração}$$

Multiplicando escalarmente por \vec{r} :

$$\vec{r} \cdot \dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{\beta}$$

como $\vec{x} \cdot \vec{y} \times \vec{z} = \vec{x} \times \vec{y} \cdot \vec{z}$:

$$\vec{r} \times \dot{\vec{r}} \cdot \vec{h} = \frac{\mu}{r} \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{\beta}$$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

D – equação da trajetória (1º lei de Kepler)

integrando:
$$\frac{d}{dt}(\dot{\vec{r}} \times \vec{h}) = \mu \frac{d}{dt}(\dot{\vec{r}})$$

$$\dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} + \vec{\beta}$$

 $\operatorname{com} \vec{\beta} \equiv \operatorname{cte} \operatorname{de} \operatorname{integração}$

Multiplicando escalarmente por \vec{r} :

$$\vec{r} \cdot \dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{\beta}$$

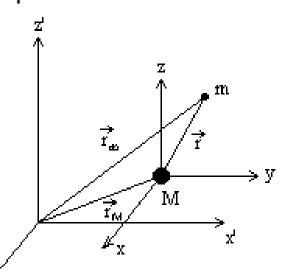
como $\vec{x} \cdot \vec{y} \times \vec{z} = \vec{x} \times \vec{y} \cdot \vec{z}$:

$$\vec{r} \times \dot{\vec{r}} \cdot \vec{h} = \frac{\mu}{r} \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{\beta}$$

$$\vec{h} = \vec{r} \times \vec{v}$$
 (III)

$$\Rightarrow h^2 = \mu r + r\beta \cos \gamma$$

com $\gamma \equiv \hat{a}$ ngulo entre \vec{r} e $\vec{\beta}$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

D – equação da trajetória (1º lei de Kepler)

integrando:
$$\frac{d}{dt}(\dot{\vec{r}} \times \vec{h}) = \mu \frac{d}{dt}(\dot{\vec{r}})$$

$$\dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} + \vec{\beta}$$

 $\operatorname{com} \vec{\beta} \equiv \operatorname{cte} \operatorname{de} \operatorname{integração}$

Multiplicando escalarmente por
$$\vec{r}$$
:

$$\vec{r}.\dot{\vec{r}}\times\vec{h} = \frac{\mu}{r}\vec{r}.\vec{r} + \vec{r}.\vec{\beta}$$

como $\vec{x} \cdot \vec{y} \times \vec{z} = \vec{x} \times \vec{y} \cdot \vec{z}$:

$$\vec{r} \times \dot{\vec{r}} \cdot \vec{h} = \frac{\mu}{r} \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{\beta}$$

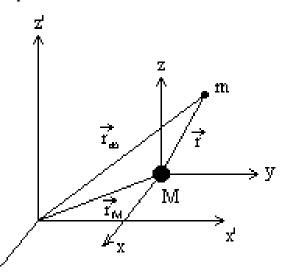
$$\vec{h} = \vec{r} \times \vec{v} \quad (III)$$

$$\Rightarrow h^2 = \mu r + r\beta \cos \gamma$$

$$\text{com } \gamma \equiv \text{ângulo entre } \vec{r} \in \vec{\beta}$$

$$h^{2} = \mu r + r\beta \cos \gamma = r(\mu + \beta \cos \gamma)$$

$$r = \frac{h^{2}}{\mu + \beta \cos \gamma} = \frac{h^{2}/\mu}{1 + \frac{\beta}{\mu} \cos \gamma}$$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa

de M e não girante em relação ao primeiro.

D – equação da trajetória (1º lei de Kepler)

integrando:
$$\frac{d}{dt}(\dot{\vec{r}} \times \vec{h}) = \mu \frac{d}{dt}(\dot{\vec{r}})$$

$$\dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} + \vec{\beta}$$

 $\operatorname{com} \vec{\beta} \equiv \operatorname{cte} \operatorname{de} \operatorname{integração}$

Multiplicando escalarmente por \vec{r} :

$$\vec{r} \cdot \dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{\beta}$$

como $\vec{x} \cdot \vec{y} \times \vec{z} = \vec{x} \times \vec{y} \cdot \vec{z}$:

$$\vec{r} \times \dot{\vec{r}} \cdot \vec{h} = \frac{\mu}{r} \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{\beta}$$

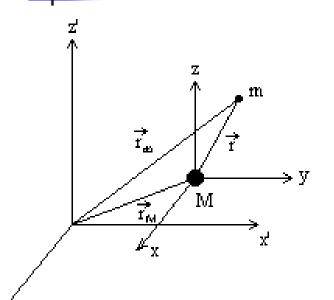
$$\vec{h} = \vec{r} \times \vec{v}$$
 (III)

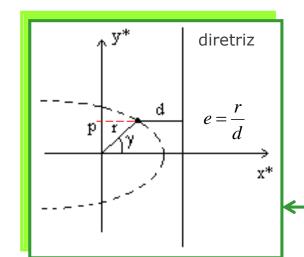
$$\Rightarrow h^2 = \mu r + r\beta \cos \gamma$$

com $\gamma \equiv \hat{a}$ ngulo entre $\vec{r} \in \vec{\beta}$

Logo:
$$r = \frac{h^2 / \mu}{1 + (\beta / \mu) \cos \gamma}$$
 (VI)

1° Lei de Kepler (Eq. geral das cônicas)





 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto

 $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

D – equação da trajetória (1º lei de Kepler)

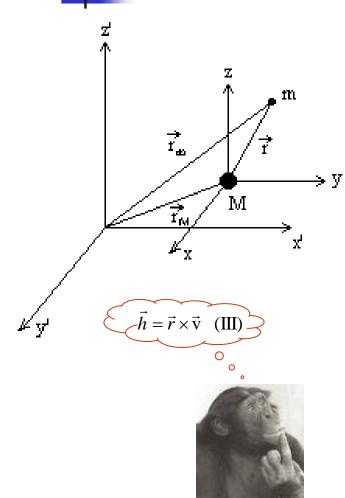
integrando:
$$\frac{d}{dt}(\dot{\vec{r}} \times \vec{h}) = \mu \frac{d}{dt}(\dot{\vec{r}})$$

$$\dot{\vec{r}} \times \vec{h} = \frac{\mu}{r} \vec{r} + \vec{\beta}$$

$$\operatorname{com} \vec{\beta} \equiv \operatorname{cte} \operatorname{de} \operatorname{integração}$$

Em coord. polares: $r = \frac{p}{1 + e \cos \gamma}$

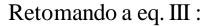
$$com p = h^2 / \mu e e = \beta / \mu$$



 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto

 $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.



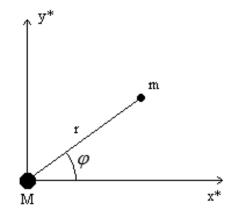
$$\vec{h} = \vec{r} \times \vec{v}$$

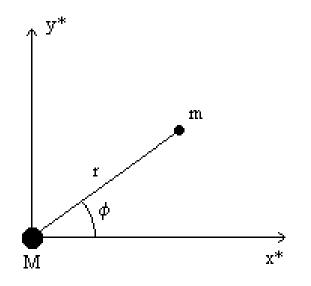
Em coord. polares:

$$\vec{r} = x * \vec{i} + y * \vec{j}$$

$$x^* = r \cos \varphi$$
 $\dot{x}^* = \dot{r} \cos \varphi - r sen \varphi \dot{\varphi}$

$$y^* = rsen\varphi$$
 $\dot{y}^* = \dot{r}sen\varphi + r\cos\varphi\dot{\varphi}$





 $M, m \equiv \text{massas}$

 $x', y', z' \equiv$ sistema inercial do conjunto $x, y, z \equiv$ sistema inercial com origem no centro de massa de M e não girante em relação ao primeiro.

 $E-2^a$ lei de Kepler)

Retomando a eq. III:

$$\vec{h} = \vec{r} \times \vec{v}$$

Em coord. polares:

$$\vec{r} = x * \vec{i} + y * \vec{j}$$

$$x^* = r \cos \varphi \qquad \dot{x}^* = \dot{r} \cos \varphi - r sen \varphi \dot{\varphi}$$

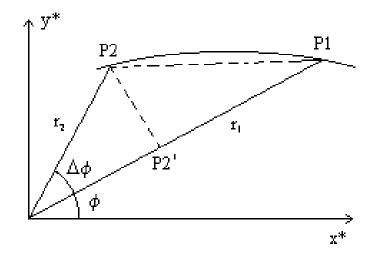
$$y^* = r sen \varphi \qquad \dot{y}^* = \dot{r} sen \varphi + r \cos \varphi \dot{\varphi}$$

Logo:

$$\vec{r} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x^* & y^* & 0 \\ \dot{x}^* & \dot{y}^* & 0 \end{vmatrix} = x^* \dot{y}^* \vec{k} - \dot{x}^*$$

$$\vec{r} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x^* & y^* & 0 \end{vmatrix} = x^* \dot{y}^* \dot{k} - \dot{x}^* y^* \dot{k} = r \cos \phi (\dot{r} \operatorname{sen} \phi + r \cos \phi \dot{\phi}) - r \operatorname{sen} \phi (\dot{r} \cos \phi - r \operatorname{sen} \phi \dot{\phi}) = \\ \dot{x}^* & \dot{y}^* & 0 \end{vmatrix} = r \dot{r} \operatorname{sen} \phi \cos \phi + r^2 \cos^2 \phi \dot{\phi} - r \dot{r} \operatorname{sen} \phi \cos \phi + r^2 \operatorname{sen}^2 \phi \dot{\phi} = \\ = r^2 (\operatorname{sen}^2 \phi + \cos^2 \phi) \dot{\phi} = r^2 \dot{\phi} \qquad \therefore h = r^2 \dot{\phi}$$

$$\text{Enos Picazzio - IAGUSP (2017)}$$



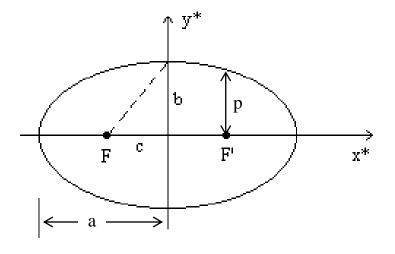
E – 2^a lei de Kepler

Sendo P1 e P2 posições próximas e sucessivas no intervalo Δt, a área será:

$$\Delta A = \frac{r_1 r_2 sen \Delta \phi}{2} = \frac{r_1 r_2}{2} \frac{sen \Delta \phi}{\Delta \phi} \frac{\Delta \phi}{\Delta t}$$

fazendo $\Delta t \rightarrow 0$:

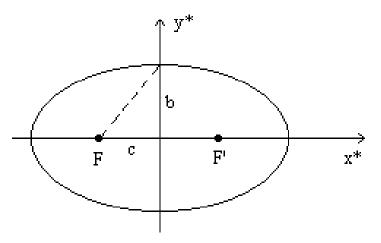
$$\frac{dA}{dt} = \frac{r^2 \dot{\phi}}{2} = \frac{h}{2} \qquad \text{(VII)}$$



E – 3^a lei de Kepler

Das relações triviais da elipse :

$$e = \frac{c}{a}$$
 $p = a(1 - e^2)$ $A = \pi ab$ $b = a\sqrt{1 - e^2}$
 $\therefore b = \sqrt{a \cdot p} = h\sqrt{\frac{a}{\mu}}$ pois $p = \frac{h^2}{\mu}$



$E-3^a$ lei de Kepler

Das relações triviais da elipse:

$$e = \frac{c}{a}$$
 $p = a(1 - e^2)$ $A = \pi ab$ $b = a\sqrt{1 - e^2}$

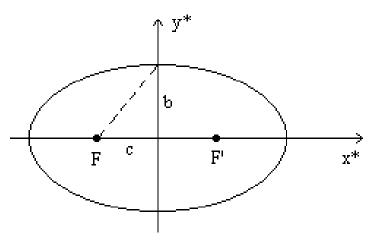
$$\therefore b = \sqrt{a \cdot p} = h \sqrt{\frac{a}{\mu}} \quad \text{pois } p = \frac{h^2}{\mu}$$

$$\frac{dA}{dt} = \frac{r^2 \dot{\phi}}{2} = \frac{h}{2}$$

Da eq. VII:

$$dA = \frac{h}{2}dt$$

integrando:
$$\pi ab = \frac{h}{2}T \Rightarrow \frac{4\pi^2(ab)^2}{h^2} = T^2$$



E – 3^a lei de Kepler

Das relações triviais da elipse:

$$e = \frac{c}{a}$$
 $p = a(1 - e^2)$ $A = \pi ab$ $b = a\sqrt{1 - e^2}$

$$\therefore b = \sqrt{a \cdot p} = h \sqrt{\frac{a}{\mu}} \quad \text{pois } p = \frac{h^2}{\mu}$$

$$ab = h (a^3/\mu)^{1/2} \longrightarrow ab = \frac{a^{3/2}h}{\mu^{1/2}}$$

$$\frac{dA}{dt} = \frac{r^2 \dot{\phi}}{2} = \frac{h}{2}$$

Da eq. VII:

$$dA = \frac{h}{2} dt$$

integrando:
$$\pi ab = \frac{h}{2}T \Rightarrow \frac{4\pi^2 (ab)^2}{h^2} = T^2$$

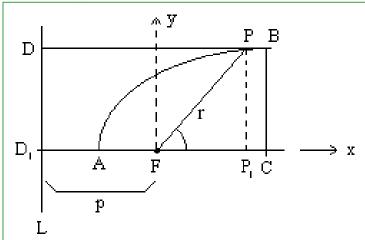
$$T^2 = \frac{4\pi^2}{\mu} a^3 \quad \text{(VIII)}$$

F = foco

L = diretriz

p = parâmetro

Problema de 3 corpos



Definição:

secção cônica é o lugar geométrico dos pontos P, tal que:

$$\frac{|PF|}{|PD|} = e \quad \text{(excentricidade)}$$

$$|PD| = |P_1D_1|$$

$$= D_1F + FP_1 = p + r\cos\theta \quad (2)$$

F – 1^a lei de Kepler

$$|PF| = r \tag{3}$$

substituindo (3) e (2) em (1):

FP = r FC = ae

AC = a O = origem

BC = b C = centro

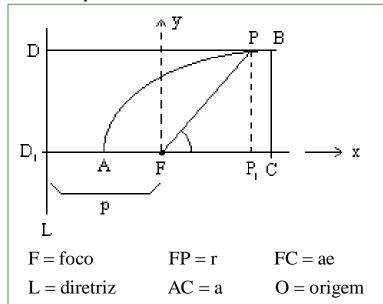
$$\frac{r}{p + r\cos\theta} = e \quad \Rightarrow \quad r = \frac{ep}{1 - e\cos\theta} \tag{4}$$

Quando
$$\theta = 180^{\circ}$$
: $r = |AF| = |AC| - |FC| = a - ae = a(1 - e)$ (5)

$$r = \frac{ep}{1 - e\cos 180} = \frac{ep}{1 + e} \tag{6}$$

p = parâmetro

Problema de 3 corpos



BC = b

F – 1^a lei de Kepler

(4)
$$r = \frac{ep}{1 - e\cos\theta}$$

(5) $r = a(1 - e)$
(6) $r = \frac{ep}{1 + e}$ $p = \frac{a(1 - e^2)}{e}$ (7) $p = \frac{a(1 - e^2)}{1 - e\cos\theta}$

Se θ for contado em sentido contrário (i.e, a partir de A), então aparecerá nas expressões acima (180 - θ) no lugar de θ . Então teremos:

Sugestões:

O Problema dos Três Corpos – análise e animações: http://cmup.fc.up.pt/cmup/relatividade/3Corpos/3corpos.html

C = centro

Simulação Computacional em Dinâmica Clássica: http://faculty.ifmo.ru/butikov/index.html

Problema gravitacional de 3 corpos

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/Chaos/ThreeBody/ThreeBody.html

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta} \tag{9}$$