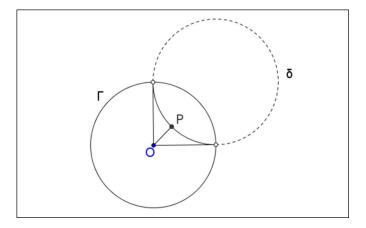
PROJETO 3 – O DISCO DE POINCARÉ

Os exercícios desta lista referem-se ao modelo do Disco de Poincaré em que um **P-ponto** é interpretado como um ponto pertencente ao interior de uma fixada circunferência euclidiana Γ de centro O e uma **P-reta** é interpretada ou como um diâmetro de Γ , excluídos seus extremos, ou como a intersecção de uma circunferência ortogonal a Γ com int(Γ).

- 1. Mostre que a P-circunferência de centro C coincide com uma circunferência euclidiana de centro A, onde A = O se C = O e $A \neq C$ se $C \neq O$. (Sugestão: O caso C = O é consequência direta da definição de circunferência. Quando C é distinto de C0, use a P-reflexão em relação à mediatriz do segmento C0 para transformar a P-circunferência de centro C0.)
- 2. Fixada uma unidade de medida, a distância d_0 para o qual a medida em graus $\pi(d_0)$ do ângulo de paralelismo é igual a 45 é chamada **a constante de Schweikart**. Ferdinand Karl Schweikart (1780 1859) foi o primeiro a observar que, fixado um ponto arbitrário A, tem-se $d_0 = \sup\{AD \mid \overline{AD} \text{ é a altura do } \Delta ABC \text{ a partir do vértice } A \text{ onde } \Delta ABC \text{ é um triângulo retângulo isósceles com } \overline{AB} \cong \overline{AC}\}$. Verifique que $d_0 = \ln(1 + \sqrt{2})$. (Sugestão: Na figura abaixo, $d_0 = d_P(O, P)$.)



- 3. Dados uma P-reta m e um P-ponto P, descreva e justifique uma construção com régua e compasso da P-reta que passa por P e é perpendicular a m.
- 4. Dados um P-ângulo ABC e uma P-semirreta ED, descreva e justifique uma construção com régua e compasso que determine a única P-semirreta EF, com F pertencente a um fixado lado de \overrightarrow{ED} , tal que $\angle ABC \cong \angle DEF$.
- 5. Dados dois P-pontos distintos A e B, descreva e justifique uma construção com régua e compasso do traçado da mediatriz do P-segmento AB.
- 6. Dados três P-pontos não colineares *A*, *B* e *C*, descreva e justifique uma construção com régua e compasso do traçado da bissetriz do P-ângulo *ABC*.
- 7. Dados dois P-pontos distintos C e A, com C distinto de O, descreva e justifique uma construção com régua e compasso do traçado da P-circunferência de centro C e raio \overline{CA} .

- 8. Dados um P-segmento OX e uma P-semirreta BA, com B distinto de O, descreva e justifique uma construção com régua e compasso que determine o único P-ponto $C \in \overrightarrow{BA} \{B\}$ tal que $\overrightarrow{OX} \cong \overrightarrow{BC}$.
- 9. Dados uma P-reta m e um P-ponto P fora de m, descreva e justifique uma construção com régua e compasso do traçado das paralelas assintóticas a m passando por P. (Sugestão: Utilize o ponto $P' = I_{\Gamma}(P)$. Lembre-se que m pode ser tanto um diâmetro de Γ , excluídos seus extremos, como do tipo $m = \delta \cap \operatorname{int}(\Gamma)$ onde δ é uma circunferência ortogonal a Γ .)
- 10. Descreva e justifique uma construção com régua e compasso da perpendicular comum a duas P-retas paralelas divergentes m_1 e m_2 . (Sugestão: Considere separadamente os casos em que $m_1 = \delta_1 \cap \operatorname{int}(\Gamma)$ e $m_2 = \delta_2 \cap \operatorname{int}(\Gamma)$ onde δ_1 e δ_2 são circunferências ortogonais a Γ daquele em que m_1 , ou m_2 , é um diâmetro de Γ , excluídos seus extremos. Utilize o ponto cuja potência em relação a δ_1 , δ_2 e Γ é a mesma.)
- 11. Dado um P-ângulo agudo, descreva e justifique uma construção com régua e compasso do traçado da única P-reta que é perpendicular a um dado lado do ângulo e é paralela assintótica ao outro lado. Este exercício mostra, no modelo do Disco de Poincaré, que a função crítica π : $]0, +\infty[\to]0, 90[$ é sobrejetora. (Sugestão: Se os lados do ângulo estão contidos em P-retas do tipo $m=\alpha \cap \operatorname{int}(\Gamma)$ e $n=\beta \cap \operatorname{int}(\Gamma)$ onde α e β são circunferências ortogonais a Γ , seja P a intersecção de Γ com o arco de α que contém o lado do ângulo e, sendo B o centro de β , considere o ponto Q, Q distinto de P, pertencente à intersecção de Γ com a reta euclidiana PB. Mostre que $P=\operatorname{I}_{\beta}(Q)$ e trace a circunferência ortogonal a Γ em Q e P.)
- 12. Construa um P-polígono regular de quatro lados, isto é, um P-polígono com quatro lados congruentes e quatro ângulos congruentes. (Sugestão: Supondo O = (0, 0) seja A = (x, x) um P-ponto arbitrário, A distinto de O. Sejam B e D os simétricos de A em relação aos eixos x e y, respectivamente, e C o simétrico de A em relação ao centro O. Mostre que $\Box ABCD$ é um P-polígono regular. O que acontece com $m_P(\angle A)$ quando A se aproxima de O, isto é, quando A o? E quando A se aproxima de Γ ?)
- 13. Sendo m um diâmetro de Γ , excluídos seus extremos, determine dois P-pontos A e B de um mesmo lado H de m de modo que nenhuma P-circunferência que contém A e B está contida em H. Este exercício mostra que a proposição "Dados uma reta m e dois pontos A e B fora de m, tem-se que A e B estão de um mesmo lado H de m se, e somente se, A e B pertencem a uma circunferência contida em H" é equivalente ao postulado euclidiano das paralelas.