CÁLCULO PARA FUNÇÕES DE VÁRIAS VARIÁVEIS I (IME-USP) PROVA 1

PROFESSOR: CRISTIÁN ORTIZ

Cada questão vale 2,5 pontos. Justifique suas respostas de forma detalhada e clara. Toda vez que usar algum resultado visto em aula ou nas listas, mencione de forma clara qual resultado você está usando. Boa prova!

(1) Considere a curva $\alpha(t) = (r \operatorname{sen}(t), r \operatorname{cos}(t), ht)$ para $t \in [0, \infty)$ e $r, h \in \mathbb{R}$ constantes positivas.

i) Calcule o comprimento de α entre 0 e algum parâmetro s > 0.

- ii) A curva α está parametrizada pelo comprimento de arco? Caso sim, explique porque, caso não, explique porque e reparametrize a curva pelo comprimento de arco.
- (2) Considere a função de duas variáveis

$$f(x,y) = \frac{e^{(x+cy)} - e^{(x-cy)}}{2},$$

onde c é uma constante. Prove que f é diferenciável el todo ponto e calcule a aproximação linear de f num ponto $a = (a_1, a_2)$.

- (3) Vimos em aula que se $f: B(x_0,r) \subseteq \mathbb{R}^3 \longrightarrow \mathbb{R}$ é uma função que possui derivadas parciais de ordem 2 em cada ponto, então o Laplaciano de f se define como a função $\Delta(f): X \subseteq \mathbb{R}^3 \longrightarrow \mathbb{R}$ dada por $\Delta(f)(x) = \frac{\partial^2 f(x)}{\partial x^2} + \frac{\partial^2 f(x)}{\partial y^2} + \frac{\partial^2 f(x)}{\partial z^2}$. Diremos que f é **harmônica** se $\Delta(f)(x) = 0$ para cada $x \in B(x_0, r)$. Prove que as funções $f(x, y) = \ln(x^2 + y^2)$ e $g(x, y) = e^x \operatorname{sen}(y)$, são harmônicas em cada ponto do seu domínio.
- (4) Considere k pontos $A_1=(a_1,b_1),...,A_k=(a_k,b_k)\in\mathbb{R}^2$ e números reais $m_1,...,m_k$ com $m_i\geq 0$ para cada i=1,...,k. Defina $f:\mathbb{R}^2\longrightarrow\mathbb{R}$, por

$$f(x,y) = \sum_{i=1}^k m_i \|(x,y) - (a_i,b_i)\|^2,$$

Encontre os pontos críticos de f. Calcule o valor de f em cada ponto crítico. Interprete geometricamente seu resultado.