MAT3120 - Cálculo III - Bacharelado Noturno

2ªLista de Exercícios

1) Calcule as seguintes integrais iteradas:

(a)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} e^{x^2+y^2} dy dx$$

(b)
$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} (x^2+y^2)^{3/2} dx dy$$

(c)
$$\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} x^2 y^2 \, dx \, dy$$

(d)
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} \, dy \, dx$$

2) Calcule as seguintes integrais duplas:

(a)
$$\iint_D xy \, dA$$
 onde D é o disco com centro na origem e raio 3.

(b)
$$\iint_R x+y \, dx dy$$
 onde R é a região à esquerda do eixo y e entre as circunferências $x^2+y^2=1$ e $x^2+y^2=4$.

(c)
$$\iint_R \cos(x^2 + y^2) dA$$
 onde R é a região acima do eixo x e dentro da circunferência $x^2 + y^2 = 0$

(d)
$$\iint_{R} \sqrt{4 - x^2 - y^2} \, dx \, dy \text{ onde } R = \{(x, y) \, | \, x^2 + y^2 \le 4, \, x \ge 0\}.$$

(e)
$$\iint_D e^{-x^2-y^2} dxdy$$
 onde D é a região limitada pelo semicírculo $x = \sqrt{4-y^2}$ e o eixo y .

(f)
$$\iint_R y \, \mathrm{e}^x \, dA$$
 onde R é região do primeiro quadrante contida pelo círculo $x^2 + y^2 = 16$

(g)
$$\iint_D x \, dA$$
 onde D é a região do primeiro quadrante compreendida entre os círculos $x^2 + y^2 = 4$ e $x^2 + y^2 = 2x$.

3) Determine o volume dos sólidos dados.

- (a) Abaixo do parabolóide $z=x^2+y^2$ e acima do disco $x^2+y^2\leq 9$ (disco situado no plano 0xy).
- (b) Dentro da esfera $x^2 + y^2 + z^2 = 16$ e fora do cilindro $x^2 + y^2 = 4$.
- (c) Uma esfera de raio a.
- (d) Limitado pelo paraboló
ide $z=10-3x^2-3y^2$ e pelo plano $z=4.\,$
- (e) Acima do cone $z=\sqrt{x^2+y^2}$ e abaixo da esfera $x^2+y^2+z^2=1$.
- (f) Limitado pelos paraboló
ides $z=3x^2+3y^2$ e $z=4-x^2-y^2.$
- (g) Dentro do cilindro $x^2 + y^2 = 4$ e do elipsóide $4x^2 + 4y^2 + z^2 = 64$.

- 4) Determine a massa e o centro de massa da lâmina que ocupa a região D e tem função densidade ρ ; para os exercícios marcados com asterisco, determine também os momentos de inércia I_x , I_y e I_0 :
 - (a) $D = \{(x,y) \mid 0 \le x \le 2, -1 \le y \le 1\}$ e $\rho(x,y) = xy^2$.
 - (b) $D=\{(x,y)\,|\, 0\leq x\leq a,\ 0\leq y\leq b\}$ e $\rho(x,y)=cxy,$ onde a,b e c são números reais positivos.
 - (c) D é a região triangular com vértices (0,0), (2,1), (0,3) e $\rho(x,y)=x+y$.
 - (d) D é a região triangular com vértices (0,0), (1,1), (4,0) e $\rho(x,y)=x$.
 - (e) * D é limitada por $y = e^x$, y = 0, x = 0, x = 1 e $\rho(x, y) = y$.
 - (f) D é limitada por $y = \sqrt{x}$, y = 0, x = 1 e $\rho(x, y) = x$.
 - (g) * D é limitada pela parábola $x = y^2$, pela reta y = x 2 e $\rho(x, y) = 3$.
 - (h) $D = \{(x,y) \mid 0 \le y \le \cos x, \ 0 \le x \le \pi/2\} \in \rho(x,y) = x.$
 - (i) D é a parte do disco $x^2 + y^2 \le 1$ no primeiro quadrante e a densidade em qualquer ponto é proporcional à distância do ponto ao eixo x.
 - (j) * D é a parte do disco $x^2 + y^2 \le 1$ no primeiro quadrante e a densidade em qualquer ponto é proporcional ao quadrado da distância do ponto à origem.

Todos os exercícios listados se encontram no livro "Cálculo", Stewart; secção 15.4 e 15.5.